22 research outputs found

    Comparison of machine learning and semi-quantification algorithms for (I123)FP-CIT classification: the beginning of the end for semi-quantification?

    Get PDF
    Background Semi-quantification methods are well established in the clinic for assisted reporting of (I123) Ioflupane images. Arguably, these are limited diagnostic tools. Recent research has demonstrated the potential for improved classification performance offered by machine learning algorithms. A direct comparison between methods is required to establish whether a move towards widespread clinical adoption of machine learning algorithms is justified. This study compared three machine learning algorithms with that of a range of semi-quantification methods, using the Parkinson’s Progression Markers Initiative (PPMI) research database and a locally derived clinical database for validation. Machine learning algorithms were based on support vector machine classifiers with three different sets of features: Voxel intensities Principal components of image voxel intensities Striatal binding radios from the putamen and caudate. Semi-quantification methods were based on striatal binding ratios (SBRs) from both putamina, with and without consideration of the caudates. Normal limits for the SBRs were defined through four different methods: Minimum of age-matched controls Mean minus 1/1.5/2 standard deviations from age-matched controls Linear regression of normal patient data against age (minus 1/1.5/2 standard errors) Selection of the optimum operating point on the receiver operator characteristic curve from normal and abnormal training data Each machine learning and semi-quantification technique was evaluated with stratified, nested 10-fold cross-validation, repeated 10 times. Results The mean accuracy of the semi-quantitative methods for classification of local data into Parkinsonian and non-Parkinsonian groups varied from 0.78 to 0.87, contrasting with 0.89 to 0.95 for classifying PPMI data into healthy controls and Parkinson’s disease groups. The machine learning algorithms gave mean accuracies between 0.88 to 0.92 and 0.95 to 0.97 for local and PPMI data respectively. Conclusions Classification performance was lower for the local database than the research database for both semi-quantitative and machine learning algorithms. However, for both databases, the machine learning methods generated equal or higher mean accuracies (with lower variance) than any of the semi-quantification approaches. The gain in performance from using machine learning algorithms as compared to semi-quantification was relatively small and may be insufficient, when considered in isolation, to offer significant advantages in the clinical context

    Matching von Multiskalengraphen fĂĽr den inhaltsbasierten Zugriff auf medizinische Bilder

    No full text

    A New BiGaussian Edge Filter

    No full text

    Ontology of Gaps in Content-Based Image Retrieval

    No full text
    Content-based image retrieval (CBIR) is a promising technology to enrich the core functionality of picture archiving and communication systems (PACS). CBIR has a potential for making a strong impact in diagnostics, research, and education. Research as reported in the scientific literature, however, has not made significant inroads as medical CBIR applications incorporated into routine clinical medicine or medical research. The cause is often attributed (without supporting analysis) to the inability of these applications in overcoming the “semantic gap.” The semantic gap divides the high-level scene understanding and interpretation available with human cognitive capabilities from the low-level pixel analysis of computers, based on mathematical processing and artificial intelligence methods. In this paper, we suggest a more systematic and comprehensive view of the concept of “gaps” in medical CBIR research. In particular, we define an ontology of 14 gaps that addresses the image content and features, as well as system performance and usability. In addition to these gaps, we identify seven system characteristics that impact CBIR applicability and performance. The framework we have created can be used a posteriori to compare medical CBIR systems and approaches for specific biomedical image domains and goals and a priori during the design phase of a medical CBIR application, as the systematic analysis of gaps provides detailed insight in system comparison and helps to direct future research
    corecore